#### 6. DESIGN CHARACTERISTICS / CARACTERISTICI DE CALCUL

#### **Course Notes / Note de curs**



### Dr. NAGY-GYÖRGY Tamás

Associate Professor

E-mail: tamas.nagy-gyorgy@upt.ro

**Tel:** +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219





# **6.1 DESIGN CHARACTERISTICS OF CONCRETE**

**6.2 DESIGN CHARACTERISTICS OF STEEL REINFORCEMENT** 



The compressive strength of concrete is denoted by concrete strength classes which relate to the characteristic (5%) cylinder strength  $f_{ck}$ , or the cube strength  $f_{ck,cube}$ , determined at 28 days.



Strength class of concrete is a characteristic strength, because represents the value below which 5% of values are expected to fall.

 $c_{\nu} = 15\%$ 

Universitatea Politehnica Timisoara

3

### COMPRESSIVE STRENGTH OF CONCRETE



Dr.ing. Nagy-György T. ©

4

## COMPRESSIVE STRENGTH OF CONCRETE

 $f_{ck} = f_{ck,cyl}$ 

# THE MEAN CONCRETE COMPRESSIVE STRENGTH

 $f_{cm} = f_{ck} + 8(MPa)$ 



Universitatea Politehnica Timișoara

COMPRESSIVE STRENGTH OF CONCRETE AT AN **AGE t** depends on:

- type of cement
- temperature
- curing conditions

 $f_{ck}(t) = f_{cm}(t) - 8(MPa)$  for 3 < t < 28 days

 $f_{ck}(t) = f_{ck} \qquad \text{for } t \ge 28 \text{ days}$ 

 $f_{cm}(t) = \beta_{cc}(t)f_{cm} \qquad \text{with} \quad \beta_{cc}(t) = exp\left\{s\left[1 - \left(\frac{28}{t}\right)^{1/2}\right]\right\}$ 

where  $f_{cm}(t)$  - mean concrete compressive strength at an age of t days  $\beta_{cc}(t)$ - coefficient which depends on the age of the concrete t s - coefficient which depends on the type of cement



# TENSILE STRENGTH OF CONCRETE

The tensile strength of concrete  $f_{ct}$  refers to the highest stress reached under concentric tensile loading.

The usual test is splitting of a cylindrical specimen.



Where the tensile strength is determined as the splitting tensile strength ( $f_{ct,sp}$ ) the approximate value of the axial tensile strength may be taken as:

$$f_{ct} = 0.9 f_{ct,sp}$$



## TENSILE STRENGTH OF CONCRETE

Average tensile strength is obtained from relation:

$$f_{ctm} = 0.3 f_{ck}^{2/3}$$

Other values of the characteristic tensile strength, defined by the fractal of 5% and 95%:

$$f_{ctk,0.05} = 0.7 f_{ctm}$$
  
 $f_{ctk,0.95} = 1.3 f_{ctm}$ 



Universitatea Politehnica Timisoara

8

## TENSILE STRENGTH OF CONCRETE at an age t

 $\rightarrow$  is strongly influenced by curing and drying conditions as well as by the dimensions of the structural members

$$f_{ctm}(t) = (\beta_{cc}(t))^{\alpha} \cdot f_{ctm}$$

where

 $\begin{array}{ll} \alpha = 1 & \quad \textit{for } t < 28 \textit{ days} \\ \alpha = 2/3 & \quad \textit{for } t \geq 28 \textit{ days} \end{array}$ 



## DESIGN COMPRESSIVE AND TENSILE STRENGTHS

The value of the design compressive strength is defined as

$$f_{cd} = \alpha_{cc} \frac{f_{ck}}{\gamma_c} = \frac{f_{ck}}{\gamma_c} \qquad \rightarrow \qquad f_{cd} = \frac{f_{ck}}{\gamma_c}$$

The value of the design tensile strength is defined as

$$f_{ctd} = \alpha_{ct} \frac{f_{ctk,0.05}}{\gamma_c} = \frac{f_{ctk,0.05}}{\gamma_c} \qquad \rightarrow \qquad f_{ctd} = \frac{f_{ctk,0.05}}{\gamma_c}$$

 $\alpha_{cc}$ ,  $\alpha_{ct}$  - coefficient taking account of long term effects on the compressive/tensile strength and of unfavourable effects resulting from the way the load is applied. Recommended value is = 1.0.



## PARTIAL SAFETY FACTORS FOR CONCRETE AND STEEL IN ULS

#### Table 2.1N

| Design situations      | $\gamma_{C}$ for concrete | $\gamma_{\rm S}$ for reinforcing steel | $\gamma_{\rm S}$ for prestressing steel |
|------------------------|---------------------------|----------------------------------------|-----------------------------------------|
| Persistent & Transient | 1,5                       | 1,15                                   | 1,15                                    |
| Accidental             | 1,2                       | 1,0                                    | 1,0                                     |



|                                      |     |     |     | :   | Stren | gth cla | sses | for co | ncrete | •    |     |      |      |     | Analytical relation<br>/ Explanation                                                                                                              |                                                                                                     |
|--------------------------------------|-----|-----|-----|-----|-------|---------|------|--------|--------|------|-----|------|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| f <sub>ck</sub> (MPa)                | 12  | 16  | 20  | 25  | 30    | 35      | 40   | 45     | 50     | 55   | 60  | 70   | 80   | 90  |                                                                                                                                                   | cylinder strength of concrete                                                                       |
| f <sub>ck,cube</sub><br>(MPa)        | 15  | 20  | 25  | 30  | 37    | 45      | 50   | 55     | 60     | 67   | 75  | 85   | 95   | 105 |                                                                                                                                                   | Characteristic compressive<br>cube strength of concrete                                             |
| f <sub>cm</sub><br>(MPa)             | 20  | 24  | 28  | 33  | 38    | 43      | 48   | 53     | 58     | 63   | 68  | 78   | 88   | 98  | $f_{cm} = f_{ck} + 8(MPa)$                                                                                                                        | cylinder compressive strength                                                                       |
| f <sub>ctm</sub><br>(MPa)            | 1,6 | 1,9 | 2,2 | 2,6 | 2,9   | 3,2     | 3,5  | 3,8    | 4,1    | 4,2  | 4,4 | 4,6  | 4,8  | 5,0 | $f_{ctm}$ =0,30× $f_{ck}^{(213)}$ ≤C50/60<br>$f_{ctm}$ =2,12·In(1+( $f_{cm}$ /10))<br>> C50/60                                                    | Mean value of axial tensile<br>strength of concrete                                                 |
| f <sub>ctk, 0,05</sub><br>(MPa)      | 1,1 | 1,3 | 1,5 | 1,8 | 2,0   | 2,2     | 2,5  | 2,7    | 2,9    | 3,0  | 3,1 | 3,2  | 3,4  | 3,5 | $f_{\rm ctc,0,05} = 0.7 \times f_{\rm ctm}$<br>5% fractile                                                                                        | • of concrete with 5% probabil.                                                                     |
| <i>f<sub>ctk,0,95</sub></i><br>(MPa) | 2,0 | 2,5 | 2,9 | 3,3 | 3,8   | 4,2     | 4,6  | 4,9    | 5,3    | 5,5  | 5,7 | 6,0  | 6,3  | 6,6 | $f_{ctc,0,95} = 1,3 \times f_{ctm}$<br>95% fractile                                                                                               | Characteristic tensile strength<br>of concrete with 95% probabil<br>Secant modulus of elasticity of |
| Ecm<br>(GPa)                         | 27  | 29  | 30  | 31  | 33    | 34      | 35   | 36     | 37     | 38   | 39  | 41   | 42   | 44  | $E_{cm} = 22[(f_{cm})/10]^{0.3}$<br>( $f_{cm}$ in MPa)                                                                                            | concrete<br>Compressive strain in the                                                               |
| <i>€</i> c1 (‰)                      | 1,8 | 1,9 | 2,0 | 2,1 | 2,2   | 2,25    | 2,3  | 2,4    | 2,45   | 2,5  | 2,6 | 2,7  | 2,8  | 2,8 | see Figure 3.2<br>$s_{c1} (^{0}/_{00}) = 0.7 f_{cm}^{0.31} < 2.8$                                                                                 | <b>T</b> concrete at the peak stress $f_c$                                                          |
| <i>E</i> <sub>cu1</sub> (‰)          |     |     |     |     | 3,5   |         |      |        |        | 3,2  | 3,0 | 2,8  | 2,8  | 2,8 | see Figure 3.2<br>for f <sub>ck</sub> ≥ 50 Mpa<br>s <sub>201</sub> ( <sup>0</sup> /m)=2.8+27!(98-f <sub>cm</sub> )/1001 <sup>4</sup>              | the concrete                                                                                        |
| E <sub>C2</sub> (‰)                  |     |     |     |     | 2,0   |         |      |        |        | 2,2  | 2,3 | 2,4  | 2, 5 | 2,6 | see Figure 3.3<br>for f <sub>ck</sub> ≥ 50 Mpa<br>δ <sub>62</sub> ( <sup>0</sup> / <sub>00</sub> )=2,0+0,085(f <sub>ck</sub> -50) <sup>0,53</sup> | Strain at reaching the maximum strength in concrete                                                 |
| Ecu2 (‰)                             |     |     |     | ,   | 3,5   |         |      |        |        | 3,1  | 2,9 | 2,7  | 2,6  | 2,6 | see Figure 3.3<br>for f <sub>ck</sub> ≥ 50 Mpa<br>s <sub>m2</sub> ( <sup>0</sup> / <sub>00</sub> )=2,6+35[(90-f <sub>ck</sub> )/100] <sup>4</sup> | -Ultimate strain in concrete                                                                        |
| n                                    |     |     |     |     | 2,0   |         |      |        |        | 1,75 | 1,6 | 1,45 | 1,4  | 1,4 | for f <sub>ck</sub> ≥ 50 Mpa<br>n=1,4+23,4[(90- f <sub>ck</sub> )/100] <sup>4</sup>                                                               | Exponent in formula 3.17                                                                            |
| ε <sub>c3</sub> (‰)                  |     |     |     |     | 1,75  |         |      |        | ,      | 1,8  | 1,9 | 2,0  | 2,2  | 2,3 | see Figure 3.4<br>for f <sub>ck</sub> ≥ 50 Mpa<br>ε <sub>c3</sub> (°/∞)=1,75+0,55[(f <sub>ck</sub> -50)/40]                                       | Strain at maximum strength in concrete (fig . 3.4)                                                  |
| <i>ɛ</i> <sub>сиз</sub> (‰)          |     |     |     |     | 3,5   |         |      |        |        | 3,1  | 2,9 | 2,7  | 2,6  | 2,6 | see Figure 3.4<br>for $f_{ck} \ge 50$ Mpa<br>$s_{cu3}(^{\circ}/_{cu})=2,6+35[(90-f_{ck})/100]^4$                                                  | Ultimate strain in concrete<br>(fig . 3.4)                                                          |

Dr.ing. Nagy-György T. ©

Universitatea Politeknica 12 Timișoara

The modulus of elasticity of a concrete  $(E_{cm})$  is controlled by the moduli of elasticity of its components.

 $\rightarrow$  secant value between  $\sigma_c = 0$  and  $0.4 f_{cm}$ 

$$E_{cm} = 22000 (f_{cm}/10)^{0.3}$$

Variation of the modulus of elasticity with time:

$$E_{cm}(t) = (f_{cm}(t)/f_{cm})^{0.3} \cdot E_{cm}$$

### Valid concretes with quartzite aggregates! For limestone aggregates should be reduced by 10% For sandstone aggregates should be reduced by 30% For basalt aggregates should be increased by 20%.



Universitatea Politehnica Timisoara

13

### **Poisson's ratio** may be taken equal to

| v = 0,2 | for uncracked concrete |
|---------|------------------------|
| v = 0   | for cracked concrete   |

The linear coefficient of thermal expansion may be taken equal to  $10.10^{-6} K^{-1}$ .



### **CREEP OF THE CONCRETE**

**Creep coefficient**  $\phi = \frac{\varepsilon_{creep}}{\varepsilon_e}$ 



CEMENT HYDRATION → CRISTALS (elastic behavior) & GELS (viscous behavior)



## **CREEP OF THE CONCRETE**

- $\rightarrow$  Depends on the:
- Humidity of the environment: RH (%)
- Type of the cement: (curing rate): S slow; N normal; R rapid
- Concrete strength: f<sub>ck</sub>
- Age of concrete at the time of loading:  $t_0$
- Dimensions of the element:

 $h_0 = 2A_c/u$  - notional size (mm) of the cross-section

- $A_c$  concrete cross-sectional area
- u the perimeter of that part which is exposed to drying

 $\rightarrow$  Creep is also influenced by the maturity of the concrete when the load is first applied and depends on the duration and magnitude of the loading.

Creep coefficient  $\varphi(t,t_0)$  is obtained from tables if  $\sigma_c \leq 0.45 f_{ck}(t_0)$ 

 $\leftrightarrow$  linear creep is expected



### **Concrete / Betonul**

# **CREEP OF THE CONCRETE**

- $\varphi(\infty, t_0)$  final creep coefficient
- t<sub>0</sub> age of the concrete at time of loading in days

t. 020/25 230/3 10 C35/4520 30 C80/95 50 300 1300 1,0 100 500 700 900 1100 1500 6,0 5,0 4,0 3,0 2.0 Ò 7.0  $h_0(mm)$  $\varphi(\infty, t_0)$ 

a) inside conditions - RH = 50%



Figure 3.1: Method for determining the creep coefficient  $\varphi(\infty, t_0)$  for concrete under normal environmental conditions

 $h_0 = 2A_c/u$ 

 $A_{c}$ 

- concrete cross-sectional area
- u perimeter of that part which is exposed to drying
- S, N, R cement types
  - S slow
  - N normal
  - R rapid



## **CREEP OF THE CONCRETE - SR EN 1991-1-1**





- choose of environmental conditions (RH=50% inside; RH=80% outside)
- Choose of cement type (N, R, S)



$$h_0 = 2A_c/u$$

- Choose of concrete class
- Calculus of h<sub>o</sub>

→ Creep of concrete depends on humidity of the environment, dimensions of the element and composition of concrete + age of concrete at the time of loading and duration and magnitude of the loading.

Dr.ing. Nagy-György T. ©

Faculty of Civil Engineering



### **CREEP OF THE CONCRETE - SR EN 1991-1-1**



### 2. Secant

→ Creep of concrete depends on **humidity** of the environment, **dimensions** of the element and **composition** of concrete + **age of concrete** at the time of loading and **duration** and **magnitude** of the loading.

Dr.ing. Nagy-György T. ©

Politeknica 19

### **Concrete / Betonul**

The creep deformation of concrete  $\varepsilon_{cc}(\infty, t_0)$  at time  $t = \infty$  for a constant compressive stress  $\sigma_c$  applied at the concrete age  $t_0$  is:

$$\varepsilon_{cc}(\infty, t_0) = \varphi(\infty, t_0) \cdot (\sigma_c / E_c)$$

 $E_{c} = 1,05E_{cm}$ 



The effective modulus of elasticity of concrete under long term loads:

$$E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)}$$



### SHRINKAGE OF THE CONCRETE

The total shrinkage strain  $\varepsilon_{cs}$  is composed of two components:

1. the drying shrinkage strain  $\varepsilon_{cd}$  - develops slowly, since it is a function of the migration of the water through the hardened concrete.

2. the autogenous shrinkage strain  $\varepsilon_{ca}$  - develops during hardening of the concrete: the major part therefore develops in the early days after casting. Autogenous shrinkage is a linear function of the concrete strength.

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$



Relative Humidity (in %)

80

0.30

0.24

0.19

0.15

0.13

90

0.17

0.13

0.10

0.08

0.07

100

0.00

0.00

0.00

0.00

0.00

#### **Concrete / Betonul**

### Drying shrinkage strain at an age t

| $\varepsilon_{cd}(t) = \beta(t, t_s) \cdot k_h \cdot \varepsilon_{cd,0}$ | f <sub>ok</sub> /f <sub>ok,oube</sub><br>(MPa) | 20   | 40   |
|--------------------------------------------------------------------------|------------------------------------------------|------|------|
|                                                                          | 20/25                                          | 0.62 | 0.58 |
|                                                                          | 40/50                                          | 0.48 | 0.46 |
|                                                                          | 60/75                                          | 0.38 | 0.36 |
| (t - t)                                                                  | 80/95                                          | 0.30 | 0.28 |
| $\beta$ (t t) - $(t-t_s)$                                                | 90/105                                         | 0.27 | 0.25 |
| $p_{\rm ds}(t,t_{\rm s}) = \frac{1}{(t-t_{\rm s}) + 0.04\sqrt{h_0^3}}$   |                                                |      |      |

### Table 3.2 Nominal unrestrained drying shrinkage values $g_{\text{cd},0}$ (in $^0/_{00}$ ) for concrete with cement CEM Class N

60

0.49

0.38

0.30

0.24

0.21

| $h_0$ | <i>k</i> h |
|-------|------------|
| 100   | 1.0        |
| 200   | 0.85       |
| 300   | 0.75       |
| ≥ 500 | 0.70       |

 $k_h$  = coefficient depending on the notional size  $h_0$ 

 $h_0 = 2A_c/u$ 

*t* - age of the concrete at the moment considered, in days

 $t_s$  - the age of the concrete (days) at the beginning of drying shrinkage (or swelling)



### Autogenous shrinkage $\varepsilon_{ca}$

$$\varepsilon_{ca}(t) = \beta_{as}(t) \cdot \varepsilon_{ca}(\infty)$$

### Where

$$\varepsilon_{ca}(\infty) = 2.5(f_{ck} - 10)10^{-6}$$

$$\beta_{as}(t) = 1 - exp(-0.2t^{0.5})$$



### **CONCRETE STRESS-STRAIN DIAGRAM - non-linear structural analysis**



Dr.ing. Nagy-György T. ©



### **CONCRETE STRESS-STRAIN DIAGRAM - design of cross-sections**

1. Parabola-rectangle diagram for concrete under compression



Dr.ing. Nagy-György T. ©

Universitatea Politehnica Timisoara

25

### **Concrete / Betonul**

### **CONCRETE STRESS-STRAIN DIAGRAM - design of cross-sections**





→ Valid for  $\leq$  C50/60



## **CONCRETE STRESS-STRAIN DIAGRAM - design of cross-sections**

2. Bi-linear stress-strain relation  $\rightarrow$  simplified (rectangular) stress



 $\lambda = 0.8$  for  $f_{ck} \le 50$  MPa  $\lambda = 0.8 - (f_{ck} - 50)/400$  for  $50 < f_{ck} \le 90$  MPa

and

 $\eta$  = 1,0 for  $f_{ck} \le 50$  MPa  $\eta$  = 1,0 -  $(f_{ck} - 50)/200$  for  $50 < f_{ck} \le 90$  MPa



### **CONCRETE STRESS-STRAIN DIAGRAMS**





## **CONFINED CONCRETE**

 $\rightarrow$  increasing compressive strength of concrete by creating triaxial stress





Confined concrete SPIRAL REINFORCEMENT



**Internal forces** 



## **CONFINED CONCRETE**

- ightarrow increasing compressive strength of concrete by creating **triaxial stress**
- $\rightarrow$  Increasing the characteristic compressive stresses to f<sub>ck,c</sub> and the deformations to  $\epsilon_{cu2,c}$





 $\sigma_1 = f_{ck,c}$ 

### **Concrete / Betonul**

## **CONFINED CONCRETE**

- $\rightarrow$  increasing compressive strength of concrete by creating **triaxial stress**
- $\rightarrow$  Increasing the characteristic compressive stresses to f<sub>ck,c</sub> and the deformations to  $\epsilon_{cu2,c}$



 $\sigma_2 = \sigma_3 - compressive stresses$ , perpendicular to element axis



 $\sigma_1 = f_{ck,c}$ 

### **Concrete / Betonul**

## **CONFINED CONCRETE**

- ightarrow increasing compressive strength of concrete by creating **triaxial stress**
- $\rightarrow$  Increasing the characteristic compressive stresses to f<sub>ck,c</sub> and the deformations to  $\epsilon_{cu2,c}$



 $\sigma_2 = \sigma_3 - compressive stresses, perpendicular to element axis$ 



 $\sigma_1 = f_{ck.c}$ 

### **Concrete / Betonul**

## **CONFINED CONCRETE**

- ightarrow increasing compressive strength of concrete by creating **triaxial stress**
- $\rightarrow$  Increasing the characteristic compressive stresses to f<sub>ck,c</sub> and the deformations to  $\epsilon_{cu2,c}$



 $\sigma_2 = \sigma_3 - compressive stresses$ , perpendicular to element axis

Politeknica 33

## **CONFINED CONCRETE**

- ightarrow increasing compressive strength of concrete by creating **triaxial stress**
- $\rightarrow$  Increasing the characteristic compressive stresses to f<sub>ck,c</sub> and the deformations to  $\epsilon_{cu2,c}$



 $\sigma_2 = \sigma_3 - compressive stresses$ , perpendicular to element axis



#### **6.1 DESIGN CHARACTERISTICS OF CONCRETE**

# **6.2 DESIGN CHARACTERISTICS OF STEEL REINFORCEMENT**



### **PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS**

## Strength criteria:

- Characteristic yield strength  $f_{yk}$  or  $f_{0,2k}$
- Upper limit of the strength  $f_{y,max} \leq 1,3 f_{yk}$
- Characteristic tensile strength ( $f_{tk}$ )
- Fatigue



## **PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS**



Politehnica 37

### PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS

## **Ductility criteria**:

- characteristic value of  $k = (f_t/f_y)_k$
- characteristic value of  $\varepsilon_{uk}$
- resistance to bending-unbending and weldability
- rib factor (bond)

$$f_R = A_R / (\pi d_{nom} s)$$

| ф     | f <sub>Rmin</sub> |
|-------|-------------------|
| 56    | 0.035             |
| 6.512 | 0.040             |
| >12   | 0.056             |

$$f_R = A_R / (\pi d_{nom} s)$$



where



 $A_{R}$  = relative rib area

s = rib distance

 $f_R \ge f_{Rmin} \rightarrow$  for high bond strength steel  $f_R < f_{Rmin} \rightarrow$  for plain bars



## PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS

### Fatigue

 $\rightarrow$  Dynamic cycles leads to decreasing of strength

 $\rightarrow$  Dynamic cycles may be characterized by:

- Coefficient of asymmetry

$$\sigma = \frac{\sigma_{smin}}{\sigma_{smax}}$$

- Amplitude (range of stress)

$$\Delta \sigma_s = \sigma_{smax} - \sigma_{smin}$$

| Product form                                                                   |                                                        | Bars a                  | nd de-coil | ed rods | Wire Fabrics |   |   |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|------------|---------|--------------|---|---|--|
| Class                                                                          |                                                        | А                       | в          | с       | А            | В | с |  |
| Fatigue stress r<br>(for N $\ge$ 2 x 10 <sup>6</sup><br>upper limit of $\beta$ | ange (MPa)<br>cycles) with an<br>f <sub>vk</sub>       |                         | ≥150 ≥100  |         |              |   |   |  |
| Bond:<br>Minimum<br>relative rib<br>area, f <sub>R,min</sub>                   | Nominal<br>bar size (mm)<br>5 - 6<br>6,5 to 12<br>> 12 | 0,035<br>0,040<br>0,056 |            |         |              |   |   |  |



#### Dr.ing. Nagy-György T. ©

### PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS

### Fatigue strength depends on:

- range of stress, whatever are  $\sigma_{smin}$  &  $\sigma_{smax}$
- welds
- steel quality:
  - grade

- manner of storage (fatigue strength of reinforcement in real elements is smaller with 40 ... 70% than in laboratory testings due to local damages, e.g. corrosion, scratches, etc.)





## PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS

### Fatigue

Behaviour of steel under fatigue load:



When  $\Delta \sigma$  does not exceed a certain value, called limit amplitude or endurance limit, the material will resist unlimited in time during the N loading / unloading cycles.

Dr.ing. Nagy-György T. 💿



### **PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS**

### Fatigue

Condition for bars & de-coiled rods:

 $\Delta \sigma_{s,max} \leq 70 MPa$ 



### **PERFORMANCE CRITERIA FOR STEEL REINFORCEMENTS**

**Other criteria:** 

- Ability to be bent
- Bond characteristics  $(f_R)$
- Sectional dimensions and tolerances
- Fatigue strength with upper limit of  $\beta f_{vk}$  for N  $\ge$  2x10<sup>6</sup> cycles
- Weldability
- Shear strength (at least 0.3 A  $f_{vk}$ )
- Weld resistance for welded fabrics and cages



#### Table C.1: Properties of reinforcement

| Product form                                                                           | Bars a                                      | nd de-coi | led rods       | \<br>\ | Nire Fabrio | Requirement or<br>quantile value (%) |         |
|----------------------------------------------------------------------------------------|---------------------------------------------|-----------|----------------|--------|-------------|--------------------------------------|---------|
| Class                                                                                  | А                                           | В         | С              | A      | В           | С                                    | -       |
| Characteristic yield strength f <sub>yk</sub><br>or f <sub>0,2k</sub> (MPa)            |                                             |           | 5,0            |        |             |                                      |         |
| Minimum value of $k = (f_t/f_y)_k$                                                     | ≥1,05                                       | ≥1,08     | ≥1,15<br><1,35 | ≥1,05  | ≥1,08       | ≥1,15<br><1,35                       | 10,0    |
| Characteristic strain at maximum force, <i>E</i> uk (%)                                | ≥2,5                                        | ≥5,0      | ≥7,5           | ≥2,5   | ≥5,0        | ≥7,5                                 | 10,0    |
| Bendability                                                                            | Bei                                         | nd/Rebend | l test         |        | -           |                                      |         |
| Shear strength                                                                         | - 0,3 A f <sub>vk</sub> (A is area of wire) |           |                |        |             |                                      | Minimum |
| MaximumNominaldeviation frombar size (mm)nominal mass≤ 8(individual bar> 8or wire) (%) | ± 6,0<br>± 4,5                              |           |                |        |             | 5,0                                  |         |



### Products used as reinforcement in Romania

|              |                            |       |         |                          | Minimal characteristic values           |                                           |                                             |     |      |
|--------------|----------------------------|-------|---------|--------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------|-----|------|
| denomination | Equivalent<br>denomination |       | t<br>on | Nominal<br>diameter (mm) | Yielding limit<br>f <sub>yk</sub> [Mpa] | Tensile strength<br>f <sub>tk</sub> [Mpa] | Elongation at<br>failure A <sub>5</sub> [%] |     |      |
| 0037         |                            | S255  |         | 612                      | 255                                     | 360                                       | 25                                          |     |      |
|              |                            | S235  |         | 1440                     | 235                                     | 300                                       |                                             |     |      |
| PC52         |                            | S355  |         | 614                      | 355                                     |                                           |                                             |     |      |
|              |                            | S345  |         | 1628                     | 345                                     | 510                                       | 20                                          |     |      |
|              |                            | \$335 |         | 3240                     | 335                                     |                                           |                                             |     |      |
|              |                            | S420  |         | 612                      | 420                                     |                                           |                                             |     |      |
| PC60         |                            | S405  |         | S405                     |                                         | 1428                                      | 405                                         | 590 | (16) |
|              |                            | S395  |         | 3240                     | 395                                     |                                           | $\smile$                                    |     |      |

low quality steel



## **Modulus of elasticity**

- E<sub>s</sub> = 200000 MPa
- **Density** =  $7850 \text{ kg/m}^3$

### The reference value is characteristic strength steel for strength

$$f_{yk} = f_y$$
 - apparent value of the yield limit

 $f_{yk} = f_{0,2}$  - conventional yield strength limit

### **Design strength of the steel**

$$f_{yd} = \frac{f_{yk}}{\gamma_s}$$



The reinforcement shall have adequate ductility as defined by the ratio of tensile strength to the yield stress,  $(f_t/f_y)_k$  and the elongation at maximum force,  $\varepsilon_{uk}$ 

Class A – generally low diameters (< 12mm), used in welded fabrics : *low ductility*Class B – most commonly used in RC elements: *medium ductility* (*DCL & DCM*)
Class C – *high ductility*, used in earthquake resistance structures (*DCH*)



Dr.ing. Nagy-György T. ©

'Universitatea Politehnica 47 Timișoara

#### 6. DESIGN CHARACTERISTICS / CARACTERISTICI DE CALCUL

### Steel / Oțelul

## Ductility





#### 6. DESIGN CHARACTERISTICS / CARACTERISTICI DE CALCUL

#### Steel / Oțelul

### Ductility





#### 6. DESIGN CHARACTERISTICS / CARACTERISTICI DE CALCUL

#### Steel / Oțelul

### Ductility



Dr.ing. Nagy-György T. ©

Politelnica 50 Timișoara





















## **DESIGN DATA FOR REINFORCING STEEL**



Dr.ing. Nagy-György T. ©















### **ROMANIAN PRODUCTS**

 $\rightarrow$  - plain bar used for stirrups and helix or as secondary reinforcement **OB37** 



**PC52** and **PC60**  $\rightarrow$  ribbed bars, used as principal reinforcement (structural)





**Delivery**:

- Coiled for  $\phi$  = 6...12 mm
- Strait bars  $\phi \ge 14$  mm; L = 8(10)...18 m

Dr.ing. Nagy-György T. ©







60

## **ROMANIAN PRODUCTS**

**STNB** cold drawn wire  $\phi = 3...10$ mm plain wire used for welded fabrics (STAS 438/3-89) characteristics - table



|                | Minimal characteristic values |                      |                                    |  |  |  |  |  |  |
|----------------|-------------------------------|----------------------|------------------------------------|--|--|--|--|--|--|
| ф<br>(mm)      | $f_{yk} \ (\text{MPa})$       | $f_{tk}(\text{MPa})$ | Elongation at failure $A_{10}$ (%) |  |  |  |  |  |  |
| 3,0; 3,5; 4,0  | 510                           | 610                  | 6                                  |  |  |  |  |  |  |
| 4,5; 5,0; 5,6  | 140                           |                      | 7                                  |  |  |  |  |  |  |
| 6,0; 6,5; 7,1  | 460                           | 560                  | 8                                  |  |  |  |  |  |  |
| 8,0; 9,0; 10,0 | 400                           | 510                  | 8                                  |  |  |  |  |  |  |



- frequency of use: G-high; L-medium; S-low
- style: Q squared grid; R rectangular grid
- dimension: 6,0 x 2,45 m



## **ROMANIAN PRODUCTS**

SPPBindented wire by plastic deformation<br/> $\phi$ = 4...8 mm<br/> $f_{0,2k}$  = 460 MPa<br/> $f_{tk}$  = 510 MPa<br/>used for welded fabrics; dimensions by the producer





Dr.ing. Nagy-György T. ©

## **CLASSIFICATION OF THE ROMANIAN PRODUCTS**

- Steel **PC60** satisfies both criteria of strength and ductility
- Steel OB37 and PC52 don't satisfy requirements of yielding limit strength

# $f_{y,max}$ < 400 MPa

- **Ductility** is satisfied for all the laminated rebars, the ratio  $k = f_t / f_{vk} = 1, 4... 1, 5$
- Elongation at maximum force has higher values than those prescribed
- Delivery:
- Coiled for  $\phi$  = 6...12 mm
- Strait bars  $\phi \ge 14$  mm; L = 8(10)...18 m



### **TESTS FOR BARS**





### THANK YOU FOR YOUR ATTENTION!





Professor

E-mail: tamas.nagy-gyorgy@upt.ro Tel: +40 256 403 935 Office: A219 Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm





Dr.ing. Nagy-György T. ©

poiversitatea Politebnica 65 Timișoara